안녕하세요. 허세임입니다. 오늘은 친구의 10년전 사진을 가지고 사진어플없이 chatgpt와의 대화로 사진을 복원해보는 작업을 해보겠습니다.

시작하기

먼저 오늘의 준비물 사진입니다.

C6976749-9A9B-4DE3-9999-330718AC7AC3_1_105_c.jpeg

대한민국 남자아이들이라면 모두 하나씩 가지고있는 태권도 사진입니다. 색이 많이 바래있네요. 이래서 사진은 디지털로 소장해야하나봅니다.

이번작업은 gpt4 ADA로 진행하였습니다.

Untitled

먼저 이 사진의 디테일에 대해 설명하여, gpt가 이미지를 이해하는데 도움을 줍니다.

Untitled

from PIL import Image
import IPython.display as display

# Load the image
image_path = '/mnt/data/IMG_7115.jpeg'
original_image = Image.open(image_path)

# Display the image
display.display(original_image)

Untitled

import cv2
import numpy as np

# Convert the image to a numpy array
np_image = np.array(original_image)

# Convert the image from RGB to BGR because OpenCV uses BGR format
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)

# First, we'll apply histogram equalization to improve the contrast of the image
# This is usually a good first step in the process of image restoration
# We need to convert the image to a LAB color space, equalize the L channel and then convert back to RGB
lab = cv2.cvtColor(np_image, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
l_eq = cv2.equalizeHist(l)
lab_eq = cv2.merge((l_eq, a, b))
np_image_eq = cv2.cvtColor(lab_eq, cv2.COLOR_LAB2BGR)

# Now we'll convert it back to RGB for further processing
np_image_eq = cv2.cvtColor(np_image_eq, cv2.COLOR_BGR2RGB)

# Convert back to PIL Image and display the result
restored_image = Image.fromarray(np_image_eq)
display.display(restored_image)

# Save the intermediate result to the disk
intermediate_result_path = '/mnt/data/IMG_7115_restored_intermediate.jpeg'
restored_image.save(intermediate_result_path)

intermediate_result_path

Untitled

Untitled

C6976749-9A9B-4DE3-9999-330718AC7AC3_1_105_c.jpeg

IMG_7115_restored_intermediate.jpeg

전후 비교 사진입니다. 이미지가 좀 선명해진것같긴한데, 전체적으로 푸르스름한 보라빛 제거가 필요해보입니다.

Untitled

# Function to reduce blue and purple tones
def reduce_blue_purple_tones(image, strength=1.0):
    """
    Reduce the blue and purple tones in the image.
    
    :param image: PIL Image to be processed
    :param strength: Factor by which the blue and purple tones are reduced
    :return: PIL Image with reduced blue and purple tones
    """
    # Convert the image to RGB if it's not already in that mode
    if image.mode != 'RGB':
        image = image.convert('RGB')
    
    # Split into separate channels
    r, g, b = image.split()
    
    # Reduce blue channel
    b = b.point(lambda i: i * (1 - strength))
    
    # Merge channels back and convert to RGB
    result_image = Image.merge('RGB', (r, g, b))
    
    return result_image

# Apply the function to reduce blue and purple tones
strength_of_reduction = 0.5  # Adjust the strength as needed
final_restored_image = reduce_blue_purple_tones(restored_image, strength=strength_of_reduction)

# Display the final result
display.display(final_restored_image)

# Save the final result to the disk
final_result_path = '/mnt/data/IMG_7115_restored_final.jpeg'
final_restored_image.save(final_result_path)

final_result_path